Anthrax is an infection caused by the bacterium Bacillus anthracis. It can occur in four forms: skin, lungs, intestinal and injection. Symptoms begin between one day to over two months after the infection is contracted.
The skin form presents as a characteristic black blister. The inhalation form presents with fever, chest pain and shortness of breath. The intestinal form presents with diarrhea (which may contain blood), abdominal pains, nausea and vomiting. The injection form presents with fever and an abscess at the site of drug injection.
THE OFFICIAL STORY
Bacillus anthracis is a rod-shaped, gram-positive, facultative anaerobic bacterium about 1 by 9 Ī¼m in size. The bacterium normally rests in spore form in the soil and can survive for decades in this state.
Anthrax is spread by contact with the bacĀteriumās spores. Anthrax spores often appear in infectious animal products. Contact is by breathing, eating or through an area of broken skin. Anthrax does not typically spread directly between people or animalsāin other words, it is not contagious.
Although a rare disease, human anĀthrax, when it does occur, is most comĀmon in Africa and central and southern Asia. Anthrax inĀfection on the skin is known as āhide-porterās disease.ā Historically, inhalaĀtional anthrax was called āwoolsorterās diseaseā because it was an occupational hazard for people who sorted wool. Today, this form of infection is extremely rare in advanced nations, as almost no infected animals remain. In 2008, a drum maker in the United Kingdom who worked with untreated animal skins died from inhalation anthrax.1
While rare today, anthrax posed a major economic and livestock challenge in France and elsewhere during the nineteenth century. Sheep were particularly vulnerable, and national funds were set aside to investigate the production of a vaccine. Louis Pasteur dedicated several years to this quest after Robert Koch, his German rival, claimed discovery of the causative BacilĀlus anthracis agent. The efforts to find a vaccine enticed not only Pasteur but other scientists of his day into a fiercely competitive race for the glory and the gold.
In 1881, Pasteur performed a public exĀperiment at Pouilly-le-Fort to demonstrate his concept of vaccination. He prepared two groups of twenty-five sheep, one goat and several cattle. The animals of one group were twice injected with an anthrax vaccine prepared by Pasteur, at an interval of fifteen days; the control group was left unvaccinated. Thirty days after the first injection, both groups were injected with a culture of live anthrax bacteria. All the animals in the unvaccinated group died, while all of the animals in the vaccinated group survived.
This apparent triumph, widely reported in the local, national and international press, made Pasteur a national hero and ensured the accepĀtance of vaccination in the practice of medicine.
Thatās the ofĀficial story, anyway. Now, letās examine it more closely.
PUBLIC VERSUS PRIVATE
Pasteurās pubĀlic triumphs look different when we compare the glowing newspaper reports of the day with PasĀteurās private noteĀbooks, analyzed by Gerald L. Geison in his book The Private SciĀence of Louis Pasteur.2
Pasteur promoted the theory, widely disĀputed at the time, that microbes caused most if not every disease. The germ theory allowed scientists to envisage a quick fix to disease with a vaccine containing a weakened or attenuated form of the bacteriaāsimilar to the then-comĀmon idea that a little bit of poison could make you immune to a larger dose.
Reading about these early attempts to find a vaccine for anthrax conjures up images of Monty Python and the Ministry of Silly Science. Some scientists attempted āattenuationā by subjecting the microbe to a poison, potassium bichromate, or carbolic acid, a disinfectant. Another scientist thought he could create an attenuated vaccine by heating the blood of infected animals and injecting it into non-infected ones. Some favored boiling the bacteria in chicken broth, others in urine. One of Pasteurās colleagues tried to āenfeebleā anthrax cultures by exposing them to gasoline vapors. Pasteur attempted to destroy the virulence of the anthrax bacillus by subjectĀing it to āatmospheric oxygen,ā science-speak for airāall of these theories pursued with John Cleese-like gravitas.
Unfortunately for these would-be heroes, none of the ideas worked very well. For example, when Pasteurās rival, a veterinarian named TousĀsaint, focused on heated blood, which he initially claimed could serve as an effective vaccine, he later found that the results were inconsistent, even killing experimental animals. He began to add carbolic acid, which did not meet with expectations either.
In his notebooks, Pasteur expressed frustration that his own experiments with rabbits, guinea pigs, monkeys and dogs gave such inconclusive results. The magic vaccine was eluĀsive, and according to Geison, Pasteur had āexceptionally little experimental basis for announcing the ādiscoveryā of an anthrax vaccine in January 1880.ā2 Pasteur made a similar announcement in February 1881, and in March he reported successful results in preliminary tests on sheep. As Geison recounts, āthe boldly confident tone of Pasteurās public reports exagĀgerated the actual results to date of his experiĀments with the new vaccine. In fact, the results of his tests remained ādecidedly inconclusive.āā2
Another problem that Pasteur encountered was that try as he might, he was unable to make animals sick by injecting them with the microbe he associated with the disease he was studying, such as anthrax or rabies. In the case of anthrax, to make healthy animals sicken and die, he had to inject them with āvirulent anthrax.ā Pasteur made āpathogenicā microbes more virulent by what he called āserial passageā of the organism through other animals. In the case of anthrax, he used guinea pigs, injecting them with the microorganism he associated with anthrax, then sacrificing the animal and injecting its blood or tissueāpossibly mixed with poisons such as carbolic acid or potassium bichromateāinto anĀother animal; this process was repeated through several guinea pigs. In this way he came up with what he called āvirulent anthrax.ā
For rabies, Pasteur was able to produce the symptoms of disease by injecting ācerebral matter. . . extracted from a rabid dog under sterile [that is, poisoned] conditions and then inoculated directly onto the surface of the brain of a healthy dog through a hole drilled into its skull.ā This treatment did sometimes make dogs foam at the mouth and die.2
In the midst of his frustrating anthrax exĀperiments, Pasteur was enticed by the Academy of Medicine into making the celebrated demonstration at Pouilly-le-Fort. With his rival Toussaint (a mere vet, not even a true scientist!) breathing down his neck, his enemies made him sign the protocol of an experiment they judged impossible of success. Pasteur, to the dismay of his co-workĀers, āimpulsivelyā accepted the Pouilly-le-Fort challenge and signed the detailed and demanding protocol of experiĀments on April 28, 1881.
A DECEPTIVE EXPERIMENT?
Geison makes much of the fact that PasĀteur deliberately deceived the public about the nature of the vaccine he used at Pouilly-le-Fort, although there was no particular reason for doĀing so. The protocols did not specify the kind of vaccine that Pasteur would inoculate into the animals. Pasteur was equally cagey earlier in his career about the details of how he made his vaccine for chicken cholera.
The key point: unlike all his early experiĀments, the trials at Pouilly-le-Fort worked perĀfectly! All the vaccinated sheep lived, and all the unvaccinated sheep died. A triumph!
However one has the right to ask: did PasĀteur cheat? After all, the stakes were highāhis whole career and the future of the germ theory were at stake. Pasteurās notebooks indicate that he was sometimes dishonest, even unsavory. He was also extremely aggressive in defending his interests, having destroyed several opponents with manipulation and sharp rhetoric.
The death of all the unvaccinated sheep is easy to explain. Pasteur used āvirulent anthraxā; in other words, he poisoned them. What about the vaccinated sheepāall of themāthat lived? Did he inject them with āvirulent anthraxā or merely anthrax, with which he had never sucĀceeded in killing any animals? As the French would say, āIl y avait quelque chose de louche.ā Something fishy was going on.
After the trial, requests for supplies of his anthrax vaccines flooded Pasteurās laboratory. The laboratory soon acquired a monopoly on the manufacĀture of commercial anthrax vaccines, and Pasteur agĀgressively pursued foreign sales. Pasteur and his laboĀratory enjoyed a net annual profit of 130,000 francs from the sale of anthrax vaccines in the mid-1880s. But Pasteur and also his asĀsistants remained surprisĀingly reluctant to disclose any details about the type of vaccine they used.
Soon problems arose, furnishing another source of suspicion that Pasteur had cheatedāthe anthrax vaccine didnāt work. In Pasteur: PlagiaĀrist, Imposter!, author R.B. Pearson notes that Pasteur began to receive letters of complaint from towns in France and from as far away as Hungary, describing fields littered with dead sheep, vaccinated the day before.3 According to the Hungarian government, āthe worst disĀeases, pneumonia, catarrhal fever, etc., have exclusively struck down the animals subjected to injection.ā An 1882 trial carried out in Turin found the vaccination worthless. In southern Russia, anthrax vaccines killed 81 percent of the sheep that received them.3
ARSENIC POISONING
Gradually, use of the anthrax vaccine faded. . . but hereās the mysterious thing: The occurrence of anthrax faded also. Today, it is a rare disease. So what was causing the death of so many animals, mostly sheep, during the nineteenth century, and why donāt sheep die of anthrax today?
Let us consider sheep dip (a liquid prepaĀration for cleansing sheep of parasites). The worldās first sheep dipāinvented and produced by George Wilson of Coldstream, Scotland in 1830āwas based on arsenic powder. One of the most successful brands was Cooperās Dip, developed in 1852 by the British veterinary surgeon and industrialist William Cooper. Cooperās dip contained arsenic powĀder and sulfur. The powder required mixing with waĀter, so naturally agriculĀtural workersālet alone the sheep dipped in the arsenic solutionāwere sometimes poisoned.
The symptoms of arseĀnic poisoning are remarkĀably similar to those of āanthrax,ā including the appearance of black skin lesions. Like anthrax, arseĀnic can poison through skin contact, through inhalation and through the gastroinĀtestinal tract. If an injection contains arsenic, it will cause a lesion at the site.
Sheep dips today no longer contain arsenic, so anthrax has disappearedāexcept in developĀing countries where it is still an ingredient in industrial processes like tanningāhence the 2008 death of the drum maker working with imported animal skins.1
The real mystery is why scientists of the day did not make the connection between anthrax and arsenic. After all, the French knew a thing or two about arsenic. Every physician and pharĀmacist stocked arsenic powder, and in Flaubertās best-selling mid-century novel Madame Bovary, his heroine kills herself by swallowing a handful of arsenic. Flaubert graphically describes the black lesions that mar the beautiful Madame Bovary as she diesāevery Frenchman knew what arsenic poisoning looked like. It seems that scientists, vets and physicians were so dazzled by the new germ theory that they could not connect poison with disease.
Pasteur died in 1895 and immediately took his place as the premier saint of medicine. The press featured engravings that reeked of old lace, showing him as the object of adulation, his flasks and beakers placed on an altar, a grateful admirer kneeling before them. Science had become the new religion. A modern description calls Pasteur āthe man who saved billions of lives.ā
But Pasteur did not radiate the satisfaction of having saved lives. He spent his last years enfeebled and sad-looking, his faults etched as deep lines of stress and worry around his eyes.
NEW ANTHRAX SCARE
Anthrax faded from public consciousness, and anthrax vaccines languished until the famous anthrax letters sent to well-known memĀbers of the media and two senators a couple of weeks after 9/11. At least twenty-two people became sick and five died.4 Genetic testing (not isolation of the bacteria) indicated anthrax spores, but no one tested the powders for arsenic.
The attacks revived interest in the anthrax vaccine. Rarely used for decades, the vaccine was dusted off for use in those considered to be in an āat-riskā category, such as members of the military. Soldiers get the vaccine in five consecutive doses, with a booster every year.5
Even according to conventional sources, all currently-used anthrax vaccines provoke reactions, such as rash, soreness and fever, and seriĀous adverse reactions occur in about 1 percent of recipients.6 In 2004, a legal injunction challenging the vaccineās safety and effectiveness halted mandatory anthrax vaccinations for members of the military, but after a 2005 FDA report claimed the vaccine was safe,7 the Defense Department reinstated mandatory anthrax vaccinations for more than two hundred thousand troops and defense contractors.8
NATUREāS SOLUTION
One last thought: Scientists have found that certain bacteria can ābioremediateā arsenic in the soil.9 These arsenic-resistant or arsenic-accumulating bacteria āare widespread in the polluted soils and are valuable candidates for bioremediation of arsenic contamiĀnated ecosystems.ā Nature always has a solution, and in the case of arsenic, the solution is certain ubiquitous soil bacteria. We need to entertain the possibility that the āhostileā anthrax bacteria, first isolated by Robert Koch, are actually a helpful remediation organism that appears on the scene (or in the body) whenever an animal or human encounters the poison called arsenic.
REFERENCES
- https://www.telegraph.co.uk/news/uknews/4942456/Drum-maker-died-from-anthrax.html.
- Geison GL. The Private Science of Louis Pasteur. Prince-ton University Press, 1995, pages 167-170.
- Pearson RB. Pasteur: Plagiarist, Imposter! The Germ Theory Exploded! Dr William von Peters, 2002.
- Landers J. The anthrax letters that terrorized a naĀtion are now decontaminated and on public view. Smithsonian Magazine, September 12, 2016.
- https://www.healthline.com/health/anthrax-vaccine-side-effects#dosage.
- https://en.wikipedia.org/wiki/Anthrax_vaccines.
- Roos R. FDA seeks comments on controversial anthrax vaccine. CIDRAP, January 13, 2005.
- Air Force Special Operations Command. Anthrax vaccine mandatory again. https://www.afsoc.af.mil/News/Article-Display/Article/163403/anthrax-vaccine-mandatory-again/.
- Ghodsi H, Hoodaji M, Tahmourespour A, Gheisar MM. Investigation of bioremediation of arsenic by bacteria isolated from contaminated soil. African Journal of Microbiology Research. 2012;5(32):5889-5895.
This article appeared in Wise Traditions in Food, Farming and the Healing Arts, the quarterly journal of the Weston A. Price Foundation,Ā Fall 2020
šØļø Print post
Oscar says
Thanks for your story and enlightening me regarding Arsenic.
Please, where can i find out more. I have a home well and would like to clean the water of arsenic the most economical way possible.
Thanks,